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ABSTRACT 

A domain decomposition algorithm suitable for the efficient and accurate solu- 
tion of a parabolic reaction convection diffusion equation with small parameter on 
the diffusion term is presented. Convergence is established via maximum principle 
arguments. The equation arises in the modeling of laminar transonic flow. Decom- 
position into subdmomains is accomplished via singular perturbation analysis which 
dictates regions where certain reduced equations may be solved in place of the full 
equation, effectively preconditioning the problem. This paper concentrates on the the 
theoretical basis of the method, establishing local and global u priori error bounds. 

Research conducted while in residence a t  the Center for Supercomputing Research and Develop 
ment, University of Illinois, supported in part by the National Science Foundation under Grant No. US 
NSF PIP-8410110, the U.S Department of Energy under Grant No. US DOE-DE-FG02-85ER25001, 
the Air Force Office of Scientific Research under Grant No. AFOSR-85-0211, the IBM Donation to  
CSRD, and by the Applied Mathematical Sciences subprogram of the Office of Energy Research, US. 
Department of Energy by Lawrence Livermore National Laboratory under contract No. W-7405-Eng- 
48. Research was also partially supported by NASA Contract No. NAS1-18605 while in residence at  
ICASE. 

1 



1. Introduction. In this paper a domain decomposition algorithm for the solu- 
tion of 

(1) P[u]  := ut + uuz - cu,, - ru = 0, 

where E is a small positive parameter is presented. This equation contains many of 
the properties that make the gasdynamic equations difficult to solve; namely, it is 
capable of modeling rapid variations such as shocks and boundary layers. A priori 
error bounds are obtained using asymptotic analysis, and are verified via maximum 
principle arguments. The analysis also identifies parallelism intrinsic in the physics 
of the problem. This parallelism may be exploited by the particular numerical meth- 
ods, allowing efficient use of parallel architectures. This paper concentrates on the 
theoretical basis for the method, discussions of the numerical details may be found in 
[lo] and [15]. 

The method presented here is appropriate for certain problems arising when mod- 
eling laminar transonic flow, such as through a duct of variable width. When modeling 
transonic flow, except in regions of rapid variation such as in shocks and boundary 
layers, convection and/or reaction terms dominate over diffusion. The reaction term 
may, for example, arise from the effects of a variable cross sectional area in a duct, 
thus this not a reacting flow. Asymptotic analysis identifies the regions where the 
solution behaves different, subdividing the domain into the following two types of re- 
gions: regions where the solution is smooth, where a reduced equation may be solved; 
and regions of rapid variations, such as in a neighborhood of a shock, where the full 
equation must be solved. The domain decomposition is independent of the choice of 
numerical schemes for the subdomains, hence the numerics will be discussed in this 
paper only briefly. In addition to dictating the domain decomposition, asymptotics 
also provides a means of approximating solutions to the problems in the subdomains. 
In this way, a set of simplified problems is obtained that is better conditioned for nu- 
merical computations. The domain decomposition and preconditionings are reflected 
in the theorems presented herein. 

The asymptotic analysis involves the derivation of analytic upper and lower 
bounds on the solution, and is performed in the style of Howes [4,5,6]. The method is 
capable of obtaining solutions to (1) when the shock is not stationary, thus extending 
Howes’ studies [7,8] into the time-dependent regime. 

The method is an iterative technique. In Section 3 the domain decomposition 
and some preconditionings are presented. This includes an error analysis of the pre- 
conditionings and the theoretical basis of the domain decomposition. In Section 5 ,  
the method is summarized by outlining the algorithm. 

2. The Quasilinear Problem. Consider the behavior of the solution of the 
quasilinear parabolic equation (1) on the domain 

D := { (5, t )  10 5 x 5 b, O 5 t < T}, 
subject to 

(3) u(x,o)  = 7 ( x ) ,  0 < x < b; 
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(4) u(0 , t )  = a(t) ,  0 < t < T; and 

The portion of the boundary along which the data is specified is denoted by 

For the sake of simplicity, it is assumed that all boundaries are inflow boundaries, 
that is, a(t)  2 a0 > 0 and p ( t )  5 PO < 0. 

The reaction term may, for example, arise from the effects of a variable cross 
sectional area in a duct. Howes [8] discusses the case when r ( x )  = - a ' ( x ) / a ( x ) ,  where 
a ( x )  is the width of the duct (see Figure 1). The coefficient r is assumed to be bounded 

FIG. 1. Variable width duct. 

with bounded derivatives. 
It is assumed that the boundary data are sufficiently smooth so that the solution 

to (1) is uniquely defined (for example, see (21). We are interested in the formation 
of shocks, thus the data is assumed to be continuous. For example, the compatibility 
conditions 

must be satisfied. In addition, it is assumed that the first derivatives of the solution 
to the reduced (e = 0) equation 

(7) Po[U] := u, + vu, - rU = 0 

are continuous except along the shock. This requires, for example, 

da! d 7  
- + 7 -  - r 7  = 0, for ( x , t )  = (0,O); dt  d x  
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(9) 
dD d7 - + 7- - t7 = 0, dt dx for (z, t) = (b,  0) .  

The problem is assumed to be nondimensionalized such that the diffusion co- 
efficient E is inversely proportional to the Reynolds number (see [13]). Based on 
free-stream conditions in transonic flow, the Reynolds number for this problem is 
large. Therefore, it is appropriate to exploit the smallness of the positive parameter 
E in the analysis. 

3. Analysis of the Preconditionings. The method exploits preconditionings 
to obtain computational efficiency and accuracy. The meaning of preconditioning is 
broader than the usual meaning applied in the linear algebra setting. In this setting, 
a problem is preconditioned if it is more tractable with respect to numerical compu- 
tations. For example, in this section a preconditioner based on a physically motivated 
domain decomposition is discussed. Regions where the solution behaves differently 
are identified. The problem is better conditioned because each numerical method 
used now needs only capture one type of behavior in the solution. In addition to 
the domain decomposition, a preconditioner involving a transformation of the spatial 
coordinate and a preconditioner involving a modification of the governing equation 
will be presented. 

The domain decomposition and the use of the reduced equation are closely related. 
Asymptotic analysis identifies two types of regions. In the outer regions, the solution 
is slowly varying and the cuzz term is small. Thus, in the outer region subdomains, 
the governing equation is modified by dropping this term with minor effects on the 
error. The solution to the reduced equation will be described next. 

Let U be a weak solution of (7) with boundary data (3-5), which is a solution 
to (1) in the limit as E 1 0. For the analysis here, assume that U has a single shock. 
Let the path of the shock be given by the curve ( z , t )  = (I ' ( t ) , t ) .  The initial and 
boundary data are assumed to be smooth; thus, the shock does not exist a t  t = 0. 
Rather, I' is assumed to be undefined for t < tr, where t = tr is the time U becomes 
discontinuous. It is natural to describe U in terms of the following functions: 

Uo(x, t) for o < t 5 tr 
Ur(z,t) for x < I'-l(t) and t 2 tr 
U,(z,t) for x > r-l(t) and t 2 tr. 

For analytic methods to choose r, see Whitham [19] or Kevorkian and Cole [9]. 

the entropy condition 
The shocks in the system are assumed to be physical; thus, the solution will satisfy 

where the speed s of the shock is given by the Rankine-Hugoniot jump condition [ll], 
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The entropy condition may be written as 

for t > tr. 
The outer-region subdomains are dictated by the regions where U is a good a p  

proximation to u. These are defined by bounding the difference U - u. The bounds 
are reflected in the following theorem. 

THEOREM 1. (Howes [6]). Let u(x , t , c )  be the solution to P[u] = 0 on D and 
U ( x , t )  be the solution to  Po[U] = 0 in the limit as c tends to  zero, each satisfying the 
the boundary data (3-5). Assume that the boundary data (3-5) satisfy the compatibility 
conditions (6),(8-9), and that cy, p and 7, with their first and second de.rivatives are 
all bounded. Then for c small enough 

when the derivatives of U are continuous across I?, and 

in the more general case when the derivatives of  U are not continuous across I'. Here 
f (x, t )  is a distance function between ( x , t )  and (I', t ) ,  and 6 is an upper bound on the 
di ference of the normal derivative of U across I?. 

The subdomains are dictated by the error bounds of this theorem. These bounds 
are small except in an asymptotically small neighborhood of the shock. The outer 
region subdomain is the portion of D where where using U to approximate u intro- 
duces a small error. The subdomain where U may be a poor approximation to u 
includes the internal or shock layer. The internal-layer subdomain is the following 
neighborhood of I': 

Here A(t) is the width of the internal-layer subdomain at  time t. Theorem 1 dictates 
that Iu-Vl = O(Y)  in D I ~  when the internal-layer subdomain has size O ( q ( t ) ~ ' / ~  
Thus, to obtain an a priori bound of O(c) on the error, the internal layer will be no 
larger than A(t) 5 K q ( t ) ~ ~ / ~  ln1l2 e, where K is a constant independent of E. The 
outer-region subdomain is the complement of DIL with respect to D, 

Y ) .  

Since the method is designed for small E, the internal-layer subdomain will be an 
asymptotically small region surrounding the shock. 

Since the solution to the reduced equation in the shock-layer subdomain may 
result in large errors, the reduced equation will be solved only in DoR. The method 
will use the full equation in DIL subject to data provided by the solution to the reduced 

4 



equation in the outer region. An analysis of the error induced with this procedure is 
presented in Corollary 2 below. 

The local error bounds of Theorem 1 are now used to establish a global a priori 
error bound when using this procedure. The bound, as presented is sharp in DOR; 
however, the bound reflects the crude error bound of Theorem 1 in the region of the 
shock. 

COROLLARY 2 .  Let u be the solution to (1)  satisfying (3-5). Suppose w is obtained 
b y  first solving (7)  in D O R  subject to (3-5), then solving (1) on DIL with boundary data 
v on ~ D I L .  Assume that the boundary data (3-5) satisfy the compatibility conditions 
(6),(8-9), and that a, /3 and 7) with their first and second derivatives are all bounded. 
If E = llu- ~111) then for E small enough 

(17) E = O ( E )  

in DOR, and 

in DIL.  

In the proof, a simple bound on the size of the solution in the internal layer is 
established via a maximum principle argument. From there, the proof follows directly 
from Theorem 1. 

Proof. The L1 norm is defined as 
e 

Inequality (17) follows directly from applying the L1 norm to the bound (13) of 
Theorem 1. 

Let 

w(t)  = K1 + Kzt. 

The constant K2 may be chosen independent of E such that 

P[w] 2 P[u] = 0 

for (z , t )  E D i t ,  and the constant Kl may be chosen independent of E such that 

for (z , t )  E aDIL. Thus, the conditions of the statement of the maximum principle 
due to Nagumo and Westfal [18] are satisfied, and w 2 u for all of DIL. A symmetric 
argument can be used to establish a lower bounding function which has the same 
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form as w. In addition, a similar argument can be used to establish upper and lower 
bounds for u in D I ~ .  Thus, 

Iu - V I  = O(1) 

for (2, t )  E D I L .  Since the area of D I L  is 0(e1/4 ln1I2 e), applying the L1 norm, the 
bound (18) follows. 0 

Thus far, the problem has been preconditioned by decomposing the domain into 
regions where the solution behaves differently, and forming subproblems in those 
regions. Another preconditioning for the problem in the internal-layer subdomain is 
also appropriate. 

The preconditioning in the internal layer is a scaling and translation of the spatial 
coordinate. The translation allows the coordinate system to move with 'the shock by 
using z - r(t) in place of x. The scaling is to stretch the spatial coordinate by l / c .  
This scaling is identified via multiple-scale asymptotic analysis [9,12,16], and allows 
the shock to be resolved in the local coordinate system. Combining these two, the 
new spatial coordinate in DIL is 

The computational analog of this transformation is described in [15] or [lo]. 
Asymptotics identified two subdomains and provided preconditioners for the prob- 

l e m  within both subdomains. The domain decomposition algorithm described thus 
far requires a priori knowledge of the location of the shock. To remove this restriction, 
the domain decomposition is combined with a functional iteration. This allows for 
the iterative determination of the shock location in the computational method. 

4. Iteration. The domain decomposition algorithm described in the previous 
section will now be treated as a single step in an iterative process. Each step of 
this iteration requires the solution of a linearized form of the reduced equation (7) in 
the outer-region subdomain followed by the solution of the full equation (1) in the 
internal-layer subdomain. Denote the iterate by ah+'. The equations governing the 
iterate are 

in DIL. Boundary data for the internal-layer subdomain is provided by the solution 
of (20) in the outer-region subdomain. 

In this section, the convergence of the iteration (20) in the outer-region subdomain 
to a solution of (7) will be established. In addition, a global a: priori error bound for 
the method will be presented. Throughout this section the conditions on the boundary 
data presented in Section 2 are assumed to be satisfied. 
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THEOREM 3. Let fi1,fi2,fiJ,. .. be the set of iterates of (20) in the subdomain 
DOR satisfying the boundary data (3-5) with initial guess fi'. Assume 6' satisfies 
(3-5) and is Lipschitz continuous on D. Let 

k-1 6 = sup l f i k  - u I. 
D 

Then 

(22) 

for ( x , t )  E DOR, where C, X and R are known positive constants. 

lished first. The boundedness of fik+l is the subject of the following lemma. 

where fik is Lipschitz continuous. Then, 

1fik+' - f i k l  < 6Ce-"(eR' - 1) 

The proof utilizes some results on continuity of the iterates which will be estab- 

LEMMA 4. Let fik+l be the solution to  equation (20) on the subdomain DOR, 

lfik++'l < &eRt, 

for ( x , t )  E DOR, where k and R are constants independent of x, t and e. 

Proof. Consider the transformation (x, t )  + (t, 7 )  defined by 

(23) t = r ,  

and 

dr 

with initial conditions 

(25) zk(0) = e, b > 6 > 0; 

(27) ."y;'(€)) = 0, € > b* 

Here, ( ( , r )  = (yo(r),r) is the image of the curve ( x , t )  = ( O , t ) ,  and ( ( , r )  = (ya(r),r) 
is the image of the curve ( x , t )  = (b , t ) .  Under this transformation, equation (20) 
becomes 

Since f i k  is Lipschitz continuous, the transformation '(23)-(27) is uniquely defined, 
and equation (28) may be used in place of equation (20). 
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The coefficient r is bounded, hence there is a constant k independent of x ,  t, and 
E such that D = K e R f  is an upper bound for fiJIS+l. In addition, w_ = --Q is a lower 
bound. Since t = T the desired result is established. ' 0  

Based on the assumption of the boundedness of i?:, the boundedness of is 
established in Lemma 5 .  

LEMMA 5 .  Suppose that the conditions of Lemma 4 obtain. Then and 
0:" are bounded independent of x ,  t and 6 in DOR. 

In the proof of this lemma, an equation governing i?:+' will be derived. Then, a 
form of the maximum principle will be shown to apply after a change of the dependent 
variable. 

Proof. Let w = fi;+l. The equation 

(29) 
dr 
dx 

w, = ( r  - @)w + -fik, 
is derived by taking the partial with respect to x of equation (20), then applying the 
transformation (23)-(27). Boundary data for w may be obtained by differentiating 
(3-5). 

Let w = el'u. The equation governing u is 

dr 
dx 

w, = ( r  - i?: - ~ ) v  + -9. 
Choose X = -max(O,info(r(z) - I?:)), so that the coefficient of v in this equation 
will be nonnegative. 

Define an upper bounding function as 

where the constants K1 and K2 will be chosen. Then z = a - u satisfies 

(30) 

where A = r - fi: - X and B = [K2 - ( r  - i?: - X)]O + - efik. The constants 
Kl and K2 may be chosen so that A, B and z ( x , O )  are nonnegative. For example, 
choose 

z, = A ( z ,  t ) Z  + B(5, t ) ,  

dz 

dr K2 = max(2, sup(r - fi: - A)) and K1 = max(0, sup -Uk, sup2v). 
DOR D o ~ d x  n 

Under these conditions;~ is positive, and 

If K2 and X are chosen as before and 

is an upper bound for u. 
A lower bounding function may be obtained in a similar way. Set g = K3 (eK4' - . 1 

dr A K3 = min(0, inf -Uk, inf 2v), 
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then g - u is nonpositive. Thus, 
Since 7 5 T, the boundedness of O;+l independent of 2, t and E follows. The 

boundedness of @+' follows from the boundedness of the terms in equation (20). 
Therefore, the desired result is established. 0 

Given that 8' is Lipschitz continuous, Lemma 5 states that all of the remaining 
interates will be Lipschitz continuous. The significance of this is that the characteristic 
transformation (23)-(27) is uniquely defined. This is used in the proof of the theorem. 

Proof. (Theorem 3). The equation governing z = Ok - Ok+l in the characteristic 

is a lower bounding function for u. 

coordinate system (23-27) is 

zr - - ( O k - 1 -  O k ) O k + l  + rz .  

An exponential change of variable will transform the problem such that a form 
of the maximum principle applies. Let 

z = e-"w, 

where X = - max(0, inf r ( z ) ) .  Thus, the equation for w is 

w, = e ' t ( f i k - 1  - P) f iJk+l  + Pw, 

where i = r + A, and w = 0 on ll. 
An upper bound for w may now be defined. Let 

rl 
R(eRr - 1) ' w(r )  = 6 

where R = supr - inf r = sup?. The constant r j  will be determined shortly. Taking 
the partial derivative with respect to 7 ,  

wf = 6q + Rw. 

An equation for f = w - w is 

Since w 2 0 and w = 0 on n, the function f is nonnegative on ll. Choose r j  = 
max(0, infD eAtfik+l]. Thus, the source term in equation (31) is nonnegative, and 
f 2 0 in DOR. Thus w(7)  2 w ( 6 , ~ )  for ( ~ ( ( , r ) , t ( ( , r ) )  in DOR. But t = 7 ,  hence 

bKe-X'(eR* - 1) 2 z = O'+l - o', 
for K = q / R .  

to the desired result. n 
Using symmetric arguments, -w can be shown to be a lower bound on z ,  leading 

9 



This theorem provides an upper bound on the latest time for which the iteration 
converges. Apply the infinity norm to (22) to obtain 

I I O k + l  - O k l l o o  5 q O k  - O k - l l l m .  

Then the following corollary provides the conditions for convergence. 

domain to  DOR. Let Tmax be the largest positive number such that 
COROLLARY 6 .  Suppose that the conditions of Theorem 3 obtain. Restrict the 

& = sup Ce-”(eRt - 1) 5 1. 

Then the sequence of iterates defined b y  (20) converges to  a solution of  (7)  satisfying 
the data (3-5) for the upper bound T on time of equation (2) satisfying Tmax > T > 0. 

O<t<Tmax 

Proof. With the restriction oft < Tmax, the iteration is a contraction mapping, 
and the result follows. 

A statement of a global a priori error bound for the computational method is 
presented in Corollary 7 below. As with Corollary 2, the bound is sharp in DOE; 
however, the bound is crude in the region of the shock. 

COROLLARY 7 .  Let u be the solution to (1)  satisfying (3-5). Suppose each iterate 
fik is obtained b y  first solving (20) in DOR subject to (3-5), then solving (21) on DIL 
with boundary data on ~ D I L .  Suppose Tmax > T > 0, and let v = limk_.*oo Ok = 
6O”. If E = IIu - ulll, then for E small enough 

(32) E = O(€) 

in DOR, and 

(33) 

in DIL. Here A = O ( ~ ’ / ~ l n ’ / ~  E). 

To prove Corollary 7, it will first be established that Ooo is the desired solution 
of equation (7). The bound in (32) will follow. Then, Lemma 8 will be applied to 
establish the bound (33). 

E = o ( ~ ~ / ~  ln”2 €1 

LEMMA 8 .  Let u be the solution to equation (1)  on DIL. Suppose that the data 
specified on ~ D I L  are bounded with bounded derivatives. Assume that ~ D I L  is at least 
C2. Then 

lul < K, 

for ( z , t )  E DIL, 
In the proof of this lemma, upper and lower bounding functions for v are estab- 

lished by applying the version of the maximum principle due to Nagumo and Westfal 
1181. 
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Proof. Make the change of dependent variable w = e-%, where X satisfies 
i = r - X 5 i o  < 0. Then 

A t  PA[w] := wt + e ww, - i w  - EW,, = 0. 

where w = e-'% on ~ D I L .  Define 

Then 

In addition, Q 2 e-% = w for ( z , t )  E ~ D I L .  These conditions allow the application 
of the Nagumo-Westfal Lemma to conclude 8 2 w for (s , t )  E DIL. By symmetric 
arguments, g = --D may be shown to be an lower bounding function on w .  Setting 
K = e A T K ,  the result is established. 0 

Proof (Corollary 7). In the outer region, v = om, where bounds for u - w = 
u-6" are given in (13-14). Thus, there is a constant KOR such that lu-fiml 5 EKOR 
for ( z , t )  E DOR. Applying the L1 norm to u - U", relation (32) is established. 

From Lemma 8, there is a constant KIL, such that lul+ 1211 5 KIL in DIL, where 
KIL is independent of E. Thus, 

Since the area covered by DIL is of size O(e114 ln114 e), relation (33) holds. 

5. Concluding Remarks. A computational method will be created from the 
theory presented in the past few sections. The method is independent of the par- 
ticular numerical schemes used; however, candidates for the numerical schemes will 
be discussed. The computational method is be constructed by solving equation (21) 
then solving equation (20) in succession. With minor modifications to account for the 
forcing term, the method of characteristics may be used for (21), or the equation my 
be solved using one of methods discussed in [1,17,3,14]. Equation (20) is solved in the 
local coordinate system (19). In this coordinate system, the coefficient of the diffusion 
is large enough to allow the application of standard finite difference methods. 

In the most general case, the internal layer subdomain will change from iteration 
to iteration. The theory presented in this paper restricts consideration to a stationary 
internal-layer subdomain; however, experimental results demonstrate that this is not 
a constraint in the numerical method [lo]. In addition, extensions to the theoretical 
basis to include a moving boundary are the subject of promising current research. 
When aDIL is allowed to move between iterations, the method must be able to deter- 
mine the location of the boundary as the computations proceed. This may be done 
by monitoring the Jacobian of the characteristic transformation (23-27), as discussed 
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in [lo]. In addition, Lemma 5 suggests that monitoring fi: may be used to place the 
boundary. The value of fi: will be large and negative in a neighborhood of the shock, 
and it will be bounded independent of E in the outer-region. 

This paper demonstrated the use of asymptotics to dictate a numerical method 
with high accuracy and efficiency. Asymptotic analysis provided a theoretical basis 
for a domain decomposition, and guided in the derivation of rigorous local and global 
a priori  error bounds. 

The asymptotic analysis can be used to analyze existing methods as well as de- 
velop new algorithms. For example, the analysis may be used to study the effects of 
using artificial viscosity. Theorem 1 provides an a priori  upper bound on the error 
induced by using 2 in place of E where 2 > E .  Such an equation would be solved when 
using constant coefficient artificial diffusion. This bound may be obtained by using 
the theorem to establish bounds separately on Iu(z, t, 2) - UI and ]u(z ,  t ,  E) - UI, then 
summing them. 

The availability of estimates and bounds on the error is important in the design of 
numerical methods. Rigorous a pr ior i  error bounds were established for the method 
presented here. In addition, the particular numerical schemes used for the subprob- 
lems allowed u poclteriori error estimation. The u priori error bounds were shown 
to be much larger than the errors observed in the computations; thus, sharper error 
bounds are expected. 
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